“还有30秒,相位跳跃完成,准备抵达目标行星德尔塔。”
“相位跳跃结束还剩,10秒,9秒……”
“相位跳跃完成,洞察号成功抵达目标行星德尔塔重力井范围内。”
相对于地球人类而言,太阳到地球距离将近1.5亿公里,即便是光要走完这段距离也要花8分多钟,可是对于洞察号飞船来说,他们的相位跳跃能够航行的速度,比光速还要快。实际上,准备相位跳跃引擎所花的时间,要比旅途的时间更长一些。
相位跳跃是铱星联合帝国在星际航行这棵科技树上较早点出来的一种航行手段,其技术原理也不算复杂。这是一种量子力学宏观化的使用,简单解释可以用量子隧穿效应进行类比。微观粒子具有波的特性,有一定概率穿越位势壁垒,其运动可以用波函数体现。利用量子相干理论和相关装置,将微观粒子的量子态共享给整艘飞船,并不干涉所有物质本来属性,也就是一种复态相干。两颗天体之间存在重力井以及重力场的引力势差,天体引力势能比附近的势能都高的空间区域,存在天体势垒。当飞船启动相位跳跃之后,在概率调整之后,实现宏观性的隧穿效应,使得飞船穿越天体势垒,直接抵达另一端,这个位置通常会是天体重力井的外围区域。所以相位跳跃本质上并不是经典物理学中的物理运动,不过它也确实完成了一个物体在四维空间绝对位移上的超光速运动。
相位跳跃这项技术的优点和缺点都比较明显。优点是,制造相位跳跃引擎所需的技术难度并不算很高,虽然越大越复杂的舰艇所配的跳跃引擎也更复杂,不过相比其他几种超光速航行手段,相位跳跃引擎的制造难度和材料制备真的可以说是小儿科了。另外一个优点是,相位跳跃所花费的能量相对较少,这个优点的战略意义就大了。这就意味着,这种引擎可以用相对能量密度更低的能源驱动,比如说核聚变反应堆。以上两条优点其实可以总结为一个,省钱。
相位跳跃的缺点也很自然,由于跳跃受天体重力约束,所以飞船跳跃最好还是选取两个作用力最大的天体,实际也就是最近的天体,这也使得实际飞船航行选取的航线时常都不是最佳航线。天体公转速度各异,在恒星系统的坐标系中所处位置实际也变换频繁,这自然就导致航行变得不固定。而相对于其他星际航行手段,相位跳跃的速度也是慢得感人了。虽说,具体相位跳跃的速率是不同的,跟天体之间的重力梯度和相互作用力有关,但以从太阳航行到地球的航行来说,跳过水星和金星,来到地球,基本上平
本章未完,请点击下一页继续阅读!